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Abstract

Work on this program was aimed at developing and understanding nano-optical structures
with emphasis on developing quantum optical based devices. Specific work focused on epitaxi-
ally grown semiconductor quantum dots (QDs). The quantum dots were fabricated in structures
that could be biased to control the charge state via the Coulomb blockade and in cavities to en-
hance the brightness. During this research period, a number of important discoveries were made
as well as critical demonstrations of importance to future technology. The discoveries include
(1) Measurement of dynamic nuclear spin polarization (DNSP) kinetics leading to fluctuation
freezing, a result that extends the coherence time of the electron spin by over 2 orders of magni-
tude (freezing time ~10msec, lifetime>>1 sec); (2) Design and demonstration of coherent optical
control steps in preparation for deterministic spin-photon entanglement; (3) Demonstration of
initialization of the 2 qubit states in a vertically coupled quantum dot (a quantum dot molecule);
(4) Demonstration of nonlocal nuclear spin fluctuation freezing in vertically coupled quantum
dots; (5) Measurement of the Overhauser magnetic field distribution before and after fluctuation
freezing showing we are able to optically narrow the nuclear field distribution; (6) Demonstra-
tion of active nuclear spin locking in a quantum dot molecule; and (7) Demonstration of a flying
qubit by entanglement of the quantum dot spin polarization states with the polarization states of
a spontaneously emitted photon; (8) Initiation of a collaboration with Paul Kwiat (Univ Illinois)
to build a high brightness spontaneous photon down conversion source for teleportation. Future
work is focusing on use of cavity enhanced quantum dots for demonstration teleportation be-
tween information contained in a spontaneous photon down conversion source to a quantum dot
spin.
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EDUCATIONAL ACTIVITY

A number of students (10) participated in the program as evidenced in the above publica-
tions. Nine of the students have since graduated with a Ph.D and gone on to postdocs or perma-
nent positions including one as a tenure track faculty member at Univ. Wash. — Seattle and an-
other at Univ. S. Carolina — Columbia. Several new students have joined the group and are in-
volved in the program.

COLLABORATIONS

The work in the program is the result of an intense collaboration with Dr. D. Gammon at The
Naval Research Laboratory to develop quantum dot structures and spintronic based devices. A
collaboration has also been started with Sven Hofling (Univ. Wurzburg) on a new kind of sample
designed to exploit cavity coupling to the dot to enhance brightness for production of flying
qubits. A collaboration was also begun with Prof. Zetian Mi (Univ. McGill) to study GaN dots
which might work for information at room temperature. In addition, the many body theory com-
ponent of the analysis of our findings is supported through our collaboration with Professor L.J.
Sham (UCSD), supported by ARO, AFOSR and NSF. Work on the quantum physics of light-
matter interactions is based in part on a long time collaboration with Prof. PR Berman (UMi).
All work on the demonstration entanglement and quantum gates was done in close collaboration
with Luming Duan (UMi). A collaboration was also begun with Prof. Paul Kwiat (Univ. Ill.) to
build a high brightness spontaneous photon down conversion source for teleportation work. I
have also had technical discussions with Dr. Paul Alsing, AFRL.

OBJECTIVES

The primary goal of this proposal is to demonstrate full coherent control of individual elec-
tronic spins in a single quantum dot and to show that adjacent dots can be coherently manipulat-
ed to form arbitrary states including entangled states between at least two separate qubits.

There research program was based on exploiting the main results of the previous research pe-
riod, namely that (1) we could freeze the nuclear spin fluctuations[1], which leads to a dramatic
reduction in the decoherence rate of the electron spin qubit, increasing the spin qubit coherence
lifetime to at least 1 microsecond, and (2) we could arbitrarily manipulate a single electron spin
qubit [2]. The measurements capitalized on our unique capability for ultrahigh resolution coher-
ent nonlinear optical spectroscopy developed over the years on this program as well as coherent
transient spectroscopy based on conventional ultrafast technology. We are also developing new
capability based on fiber-optic modulators to integrate diode laser sources and fast EO modula-
tors to provide fast pulses with special pulse shaping to test new proposals for adiabatic type
state manipulation at high modulation rates. Specifically, the following experimental objectives
formed the scientific directions of the research:

1. To demonstrate arbitrary spin state preparation and rotation of the two state spin system of a single electron
doped in a single self-assembled quantum dot using both AM and FM switching and two-photon stimulated Ra-
man excitation using 1-photon resonance enhancement through the trion state.

2. To use the ultrahigh resolution spectroscopy technique proposed by us[3] to measure the spin coherence time
and determine the time as a function of the degree of spin state mixing (determined by the angle of magnetic
field in the y-z plane where z is the growth direction and y is perpendicular to the growth direction) in order to
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provide the data base needed to design structures which combine all the features of initialization, switching,
and readout.

3. Demonstrate high speed repetitive coherent switching and extended coherence times (based on concatenated

pulses to reverse decoherence) to enable testing of concepts for (quantum) computing and other applications

and to extend the coherence time in these systems to the ultimate time scale on the order Tl (~msec)[4].

To demonstrate coherent optical control of state mixing using the AC Stark effect for fast tuning.

5. To demonstrate arbitrary spin-state preparation of two electrons localized in separate but adjacent quantum
dots using high-speed optically based spin cooling techniques.

6. To demonstrate dynamically controlled excited state interactions needed to produce arbitrary coherent super-
position states of the eigenstates of the two spins in both dots. Ultimately, these experiments would lead to pro-
duction of arbitrary entangled states and various gate operations

A

As discussed in the previous reports and in this final report, considerable progress has been
made toward the above long term objectives. Current work is continuing in line with the above
objectives.

SUMMARY OF FINDINGS

Nearly all of the research findings presented in this report have been reported in the annual
reports. However, for completeness, we list the major developments, and we review a few of the
most recent important results.

Introduction

The transfer of optical coherence to electronic coherence has featured prominently in current
research as many new applications seeking to exploit the potential of this relatively new form of
control. Ultimately, it may be possible to imagine nanophotonic/electronic materials which are
controlled optically rather than an increasing density of individual metallic wires and connec-
tions. Control in atomic and molecular systems is considerably advanced. However, control in
semiconductor systems remains under active development and rapid evolution.

In this program, we built on our previous work demonstrating that quantum dot structures in-
teract with coherent radiation similarly to atomic systems, unlike higher dimensional semicon-
ductor systems that are characterized by complex many body interactions. We are using engi-
neered structures that have had their electronic structure modified to create the ideal 3-level A
system needed for applications requiring long coherence times (the two ground states are differ-
ent carrier spin states) such as in quantum computing, and storage devices based on slow light
and lasing without inversion.

The goal of the program is to demonstrate that the essential physical features can be seen in
these systems and coherently controlled. Ultimately, the coherence time in these systems is lim-
ited by spin dephasing which can be very long, in principle. In III-V materials, this time is lim-
ited by fluctuations in the hyperfine coupling to 104 or so nuclei in a given dot. Control of the
electronic and nuclear degrees of freedom in III-V type material, as we describe in this report,
open the door to developments that would naturally lead to easy integration with other optoelec-
tronic devices.



Our approach to the study and manipulation of electron spin for application to spin based de-
vices is based on the use of coherent nonlinear laser spectroscopy, coherent transient excitation
and optical control, and the use of advanced semiconductor materials. Specifically, the electron
spin, which would also correspond to the qubit for applications in quantum information science,
is confined to a semiconductor quantum dot. Ultrafast coherent control of the electronics states
which are separated in energy in the RF and microwave region of the spectrum is achieved by
coherent optical excitation using the trion state (a negative exciton) as an intermediate state, thus
allowing optical frequencies (eV) to be used to manipulate the spin states, typically separated by
10’s of ueV. Materials are grown by MBE and further processed by lithography techniques by
our collaborators.

For quantum computing, a scalable architecture has been published by our collaborators (Lu
J. Sham, UC-SD) based on individual qubits (electron spins) confined in adjacent quantum dots.
Entanglement between spin in adjacent dots is accomplished by a modified optical RKKY
(ORKKY) interaction resulting in a Heisenberg Hamiltonian coupling between the two spins.

Figure 1 shows the basic energy level diagram for a single InAs self-assembled quantum
dots (QD) charged with a single electron and the corresponding optical selection rules for dots in
an x-oriented magnetic field (Voigt profiles) resulting from addition of one electron. Two 3-
level A-systems are produced. Relaxation between the two states is determined by spin relaxa-
tion and is known to be long, relative to the exciton relaxation time. The long relaxation time is
expected to lead to long coherence times.

[T-> Figure 1. Energy level
diagram for the nega-
tively charged heavy

vi/ Hi . hole exciton and po-
B larization selection

[T+>

rules for a magnetic
field in the Voigt di-
rection in InAs.

The usually forbidden optical transition between the trion state and the other spin state is al-
lowed in the presence of a magnetic field in the x-direction (Voigt profile). Coherent optical
control of the spin states is then enabled through a stimulated Raman two-photon (SR2P) path-
way, shown by the red and green arrows. This structure has been the foundation of all of our
single qubit measurements in this program.

Figure 2 shows the energy level diagram for the (bipartite) two qubit system based on cou-
pled quantum dots. This structure is also referred to as a quantum dot molecule (QDM). The
energy level structure and selection rules were determined by numerical simulations of the whole
solution to Schrodinger's equation in the effective mass approximation. The details of this and
the role of Coulomb exchange coupling and discrete charging are discussed in an earlier report
and in a manuscript in preparation [5].



’8>=\+x>‘t > Figure 2. The eight-level system of
the doubly charged QDM and selec-
tion rules for optical transitions in 1.5
Tesla transverse magnetic field
(Voigt geometry). The optical ground
states are in singlet (J = 0) and triplet
(J = 1) manifolds while the optical
excited states in this study consist of
an electron in the lower QD, repre-

Wy = W36

sented by |¢x> , and a trion in the

fr).

Here, spin projections are shown
along +x-direction (the direction of
the magnetic field) and + (=) denotes
. spin up (down). Dark blue lines rep-
(10+>+\0—>)= iV | resent vertically (V) polarized optical
\ fields while red lines represent hori-
q0'+>—|0'—>):H zontal (H) polarization. The theory
we developed for this was presented
in an earlier report [5].

upper QD, represented by

Summary of the most important achievements over the funding period:
Demonstration of spin rotation and a geometrical phase gate in a quantum dot.

Measurement of the nuclear spin fluctuation freezing dynamics resulting in 2 orders of magni-
tude increase in the electron spin coherence time, showing onset ~10msec and lifetimes>>1 sec.

Full design and numerical simulation of coherent optical control leading to deterministic spin-
photon entanglement.

Experimental demonstration of coherent control to prepare an InAs quantum dot for spin-photon
entanglement

First measurement of Rabi oscillations as a function of real time in a quantum dot.

Demonstration of quantum entanglement between the spin polarization states of single quantum
dot electron and the polarization states of a spontaneously emitted photon

Demonstration of nonlocal nuclear spin polarization and nuclear spin fluctuation freezing.
Demonstration of the initialization of 3 of the 4 ground states in a quantum dot with numerical

simulations showing full initialization of the 4™ state with additional optical control.

The balance of this report will feature our most recent and important results. Previous work is
summarized above and detailed in previous annual reports.
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Ground state initialization in a doubly-charged, vertically-stacked InAs quantum
dot molecule

One of the primary objectives of this research is to demonstrate an all optically controlled
universal gate. This requires the ability to initialize each of the states. We demonstrated this
earlier in the single quantum dot, but the energy level structure shown in Fig. 2 shows the prob-
lem is more complicated with eight levels. At this point in our work, we have developed optical
pumping schemes that have allowed us to initialize three of the four ground states, S, T+, and T..
An example of the pumping scheme to initialize the singlet state is shown in Fig. 3 where the
solid lines represent the optical pumping fields and the dashed lines represent the optical field
(probe) used to make measurements of the fidelity. Figure 4 shows the fidelity table for the 3
states that we have achieved. Higher fidelity is likely at higher magnetic fields but then preces-
sion frequency will begin to exceed our current detector timing resolution for controlled opera-
tions.

[R,,(8)) Initialization fidelity table
[R_,(6)) R.(7) B
R_(5)) e :
[R_©) A 098 (o0 094

7 IT.@)

S y T-
‘T,(2)> \‘ ', |T;.(3)> w y ‘}&0
% Prob ""7;; " T+ s ‘@
—————— robe e, T- <2
S) ) 7 Stoge
Pumps g, (3% error bars)

Figure 3. An example of initialization by | Figure 4. Initialization fidelity
optical pumping. Here, the singlet state is | table for 3 of the 4 states compris-
initialized. Pump frequencies are color coded | ing the ground state manifold of
(solid) and exploit the transition energy de- | the coupled quantum dot mole-
generacies. The probe is dashed and, by | cules, where each quantum dot is
polarization selection rules, couples to two | charged with a single electron.
nondegenerate transitions to make the meas-
urement.

Absent from the data in Fig. 4 is the Ty state. An examination of the energy levels in Fig. 2
shows the additional complexity of this problem because of the accidental degeneracy of four of
the optical transitions. There are various optical methods that can resolve this, but our simula-
tions show the most straightforward approach is by adjusting the intensities of the optical pump-
ing fields which then assures that we can asymptotically approach unity, as shown in Fig. 5. The
experimental demonstration of this is underway, but is more complicated because the readout of
the initialized state in this setup has to be by spectrally filtered resonant Rayleigh scattering to
avoid noise from the pump fields.

Nuclear local and nonlocal spin locking and extended two-electron spin coher-
ence in an InAs quantum dot molecule

In 2009, we reported in Nature the first observation of optically modifying the Overhauser
field (also called dynamic nuclear spin polarization, DNSP) and the corresponding of locking of
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nuclear spins (i.e., quieting or freezing of the spin fluctuations) that resulted in at least two orders
of magnitude increase in the electron spin coherence time. The data featured hysteresis as func-
tion of laser scanning direction and unusual line shapes, reflecting the change in the local Over-
hauser field as well as a dramatic increase in the dip demonstrating coherent population trapping,
a key signature of the creation of a dark state in electromagnetic transparency measurements.
The increase in the depth of the dip was a direct measure of the increase in the electron spin co-
herence time.

Figure 5. Left: Level diagram and
arrangement of pumping fields and
probe field. Right: Simulation
showing initialization of the T,
state using 4 optical pump fields.
See text for discussion. The dark
arrow shows the intensity where T,
is maximized and the other state
populations are minimized.

Simulation parameters:
Q,=0,=2y,Q,=0.1y,]=116.6 ueV,
Probe B=1.5T,y/2n=2.037 ueV.~> 1-p;;= 0.0036

Confirmation of the DNSP effect in the molecule was helpful in terms of supporting our ear-
lier claim, however, with 8 states involved in the dot and the degeneracy of the 4 transitions, we
quickly understood that locking the system into a well defined nuclear configuration as we did in
the 2009 paper was going to be considerably more complicated.

After considerable effort, we found that we could simultaneously suppress the nuclear spin
fluctuations in both upper and lower quantum dots (QDs) while optically addressing only the up-
per QD transitions. The demonstration required three separate lasers to stabilize the nuclear spin
polarization, a fourth laser (a probe field) for enabling CW dark-state spectroscopy to measure
the change in the electron spin decoherence rate. Nuclear spin narrowing is again revealed
through the emergence of prominent dark-state dips where again the degree of the transparency,
1. e., the depth of the dip, provides a direct measurement of the two-electron spin decoherence
time between arbitrary pairs of states in the singlet-triplet ground state manifold of the QDM.
An example of the data is shown in Fig. 6a (showing the arrangement of locking pumps) and Fig.
6¢ showing the appearance of the dark state dips.

One of the important consequences of this result is demonstrating that the spin locking mech-
anism has additional complexity which contribute to increasing it's importance in device designs.
Specifically, while the optical fields excite only the upper QD trion, nuclear spin locking in the
other QD appears to be channeled by the delocalized electron wavefunctions.

In addition, we have found that by careful analysis of the line shape associated with the spec-
tral response leading to CPT and electromagnetic induced transparency (EIT), we have mapped
out the Overhauser magnetic field distribution that leads to the modified lineshape. An example
of the result is shown in Fig. 6b, with and without one of the pump fields that also dramatically
demonstrates the narrowing of the field distribution with the additional pump. This data will be
important in future ideas for exploiting this behavior for potential long term information storage
as well as development of the full theoretical model for this process.
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The optically induced locking of the Overhauser field and the quieting of nuclear spin fluctu-
ations extends the applications of InAs QDMs to include the entire singlet-triplet manifold, and
further establishes the potential of InAs QDs in addressing the challenge of scaling up quantum
computation and communication. The locking demonstration is essential since there is no de-
tectable electron spin coherence in the absence of spin locking.

Figure 6. Singlet-triplet coher-
——————T——T— ence and nuclear field distribu-
ceee- Q3 = 0 MHz tion narrowing. a. Pump con-
A, —— Q3 ~ 560 MHz figuration for preparation of a
3 ’ i coherent S-T. superposition. b,
Nuclear field distributions used
in the numerical model of the
master equations for fitting the
T T T T T T | spectra in c¢. When a strong
0.50 -0.25 0.00 025 050 0.75 1.00 . .
Nuclear Overhauser field (T) pump is resonant with the S to
T, transition, the Overhauser
field distribution shows a cen-
C tral narrowing (solid black line)

Distribution (A. U.)

$0.024 T T T T T T T " — which results in a clear dark
o V.0 Without Pump 3 ip i i
! state dip in the absorption spec-

= - °  Pump 3: Q3 ~ 560 MHz .
S | ST dark- § | e | trum shown in 6¢c. c. Absorp-
e state dip ‘(\.',’pmf""m.l_“ i S-T, dark tion spectra showing the emer-
S . jaussian B-field | state dip :
2£0.01+ P Distribution p S gence of dark-state dips from S-
< —— Approximate Fit with 18/ T. and S-T: coherence at transi-
= Narrowed B-field tions w5 and g, respectively,
- Distribution . . .
5 o of %o %te o gec o B B N . following the application of
:__E-:) 0.00 —eas p e . Pl g s - Pump 3, with Q; = 560 MHz,
E , 3 , c e sl . i . "o together with numerical fits

129462 1294.64  1294.66  1294.68  1294.70 using nuclear field distributions

Probe Energy (meV) shown in b.

Summary and future directions

This program has resulted in new understanding of importance to coherent optical control of
epitaxially grown quantum dots. The studies continue to focus on demonstrating mulitqubit en-
tanglement using both photon heralded spin entanglement for spins separated by a distance and
Coulomb exchange coupling in vertically stacked quantum dots. We have expanded considera-
bly, also, in our understanding of the Overhauser field and to control that field even in the pres-
ence of more than a single electron. Our future work is to complete these studies and continue
the analysis of dots for application to classical information processing as well as extending our
studies of the optically induced nuclear state.
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